首页 >经济 > 正文

贝叶斯主义投资高手的方法,我总结为三类

2023-07-12 12:06:30来源:雪球网

原创 人神共奋 思想钢印

投资分析的尽头是贝叶斯概率

你研究了一家公司的财报,觉得数据很不错,行业空间也很大,有产业政策扶持,投资逻辑也非常顺,你考虑买入;


(资料图)

但你在调研中认识了一个公司离职人员,了解到公司管理混乱,领导人缺乏进取心,在这个竞争非常激烈的行业,你联想到公司的竞争地位实际上是在慢慢下降的,于是你犹豫了;

然后你走访了经销商,发现公司对渠道的控制力很强,而经销商的反馈也表明,消费者很有粘性,近期的动销继续保持强势。

你又跟同行讨论了一番,得到的信息更混乱了……

以上的情况是投资中的常态,从不同角度得到不同的分析结果,对应着不同获胜概率。

但操作上只有“买、不买”两种选择,如果买了,结果只有“达到盈利预期”和“没达到盈利预期”这两种中的一个,为什么一件事会有不同的概率呢?

这取决于你如何理解“概率”。

有人认为,没有什么概率,投资的结果不是赚就是亏,不是0就是100%;也有人认为,投资中有概率但算不出来,等于没有概率。

已知口袋里有9个红球和1个白球,让你闭着眼睛摸出一个为红球的概率是90%。

如果此时,你看了一眼手上的球,扔掉,继续闭眼再摸一个,因为我不知道你刚才摸到的是什么球,所以我只能认为,你摸到红球的概率还是90%,但因为你知道你自己丢掉的是红球,对于你而言,下一个仍然为红球的概率就变成88.89%。

同一件事就这样出现了两个概率。

贝叶斯算法的角度看,概率不但可计算,而且可以随着信息变化,而股价的变化取决于信息的边际变化,那么概率的变化也可以引发股价的变化,即,可以用于投资决策。

看一个实际投资问题:有一家大公司搞借壳上市,有A、B、C公司三个备选目标,你在研究了一番后觉得都差不多,于是选择了A。

后来,你找到了一个了解借壳内情的人,告诉他你买了A,但他不愿意直接告诉你答案,只能告诉你,B公司是不可能的。

请问,这个信息对你有用吗?换句话说,现在只剩下A和C两家公司,你要不要把A换成C?

很多同学可能已经看出来了,这就是“三门问题”的变形。

考虑到还有很多读者不知道“三门问题”,所以我简要地复述一下:

这是一个竞猜的电视节目,台上有三扇关着的门,其中两扇门后是羊,一扇门后是车,你可以选其中任何一扇,如果是车,就归你了。

于是,你随机选了一扇(假设是A)。

按规则,主持人(知道哪扇门后面有车)打开了其中一扇门(假设是B),让你看到这扇门背后是羊,并给你一个机会,你可换一扇门(即从A换成C)。

你的选择是“换”还是“不换”呢?

这个问题的答案,直觉判断“换”与“不换”的概率都是一样的,但实际上,你应该换,换了后得到车的概率更高。

三门问题的标准解释是这样的:因为有两只羊,一台车,所以你一开始选中羊的概率是2/3,选中车的概率是1/3。主持人打开一扇门后,如果你换的话,你之前选的是羊,必然会变成车,之前选的是车,必然变成了羊,概率就完全互换了。变成“2/3的概率选中车,1/3的概率选中羊”。

如果文字还是不好理解,用图会清楚一些:

还是想不通的人,可以用一副扑克牌模拟一下。

三门问题的答案就是重组问题的答案,你现在把仓位从A移到C的话,押中的概率就从33%上升到了67%。

很神奇吧,只要有一条有关的新消息,哪怕与A、C公司都无关,也能改变你现在的概率。

我们再把上面的条件改一改,那位知情人士又说,当然,重组没有结束前,任何事都有可能发生,B也没有完全出局,只是可能性比较低。

根据我们前面分析的方法,把仓位从A移到C的话,并不会上升到66%,但因为B的概率低于33%,换的结果仍然比不换好。

我们把上面的例子从“内幕交易”扩大到正常的投资决策场景。

一支股票,如果你不研究,买入后实现预期收益的概率就是50%。

随着你研究的深入——不管基本面分析还是技术分析还是高手指点,甚至你只是去研究了其他的公司,每掌握一个新信息,就相当于有一个无所不知的主持人帮你关上一扇“门”,买入后实现预期收益的概率开始改变,从50%向上或向下变化。

贝叶斯算法是人工智能的基础,你问ChatGPT一个问题,它蹦出来的每一个字,都是贝叶斯算法计算的最大概率值对应的字。当你告诉它,刚才说的不对,补充了一个新的信息,它马上就把这个新信息代入到刚才的结果中,产生出新的一串概率最高的文字结果——这回正是你要的答案。

看到这里,很多人就算理解了,也不知道为什么会变成这样,它太违背直觉了。这也是概率的最大特点——它可以被计算,但是你很难感受。

所以,想要理解概率,最好的方法还是“算”——找一个生活中的例子,亲手用贝叶斯公式算一算。

贝叶斯计算是有数字公式的(谢尔顿写在黑板的那个),为了不把大家吓跑,我用一个图形界面去展示,保证不出现任何中学以上的数字公式。

一位顾客走进商店,看了看货架,向你询问了某商品的情况,请问:这个顾客最终买单的概率有多高?

对于一位销售老手而言,这个问题相当于基本面高手看财报,技术高手看图,可以通过顾客的一举一动,判断客户的成交概率,决定花多少时间去向客户推销,选相应的推销重点,并且决定给出多大的折扣把客户拿下。

下面这张图把所有进店的人分成两部分,左边为成交的20%部分,右边为不成交的80%。

接下来,我们需要在先验概率的基础上,考虑一个新消息——“向你仔细询问了某商品的情况”。

这时,我们需要知道关于这个新信息的两个“条件概率”:成交客户的询问率和未成交客户的询问率——这也是历史经验值,即过去所有成交/不成交的客户中,有过仔细询问行为客户的各自占比,有经验的销售,内心对这两个概率也应该有大致的估计。

先看成交客户的询问率,即“仔细询问的成交客户/所有成交客户”,假设为50%,即把左半边五五开,然后得到上面咨询的成交客户,总占比20%*50%=10%;

再看未成交客户的询问率,即“仔细询问的未成交客户/所有未成交客户”,假设为30%,把右半边三七开,上面咨询的未成交客户,总占比80%*30%=24%。

上图的四个角分别代表了四种情况,我们今天遇到的是上半部分——咨询客户,所以,首先把下半部分的情况去掉,只看上半部分。

我们现在要分析的是——仔细咨询且成交的客户,占所有成交客户的比重,很明显,就是左上角占上半部分的比例:

所以,一位走进商场的客户,当他开口咨询时,他的成交概率就从20%上升至29.4%,有经验的销售员就应该注意这条销售线索。

用这个方法也可以继续推算出,一个不询问的客户,成交概率会从20%下降到15.2%。

一个销售老手的每一步都在收集信息,进行概率判断,所以有经验的销售员接下来不是干巴巴地介绍产品,而是进一步询问客户的需求,不同的需求分别对应着不同的成交概率。

好了,我们又遇到了跟前面一样的问题,就算概率从20%上升到29%,我还是不知道自己该怎么办?

顾客在来之前就知道自己会不会买东西,假设这人今天一定要买到,实际成交概率就是100%。

但销售员并不知道这一点,他只知道,客户最终只有买(100%)和不买(0%)这两种可能。

这正是贝叶斯概率相对古典概率的意义,一定要找到有操作意义的概率的信号。

于是,销售员注意到,顾客又问了另一个完全不相干的商品——不好,经验告诉他,这种情况下的成交概率会下降,因为很多不成心买的客户就喜欢东问西问。

但到底会下降多少呢?我们开始第二次“贝叶斯计算”,再引入两个条件概率,成交客户中,问过其他完全不相干商品的比例是30%,未成交客户中,有40%。

以下是第二次贝叶斯计算的图,需要说明的是,现在的先验概率不再是之前的20%,而是上一次计算后的约29%:

这个结果表明,当顾客问了另一个完全不相干的商品,他的成交概率从29%再次下降为8.7%/(8.7%+28.4%)=23%

还好,问完后,客户直接开始谈价格,很好,根据谈价格的行为的“第三次贝叶斯公式”,最终成交概率猛得上升到70%……

70%!等的就是你,销售员也就不藏着掖着了,直接拿出大杀器——折扣,顺利将客户拿下,成交概率最终定格在100%。

在这个过程中,虽然一开始你只有一个与实际结果相差很大的先验概率,但通过掌握更多的信息,这个概率会越来越接近实际情况——0或100%,到了一定数值,你就可以作出应对。

很多人肯定想问,我怎么才能知道这些条件概率呢?答案就是两个字——先试。

到了这里,我们就可以用“贝叶斯算法”回答开头的投资机会分析的问题了。

这个概率都不会太高,比如一般不可能超过60%(除非是特别长线的方法,或者符合要求的标的特别少的方法),否则,你只需要这一个指标,选20个股,就可以年年获得超额收益了。

如果你之前用此方法的战绩不错,那就可假定为55%。

接下来可以代入条件概率:在所有能/不能达到你的预期收益的公司中,管理不好的概率分别为多少。

事实上,这两个条件概率并不会相差太大——这个条件概率差异,称之为“区分度”,因为你的考虑时间是一年,这么短的时间,管理因素几乎可以忽略不计。而且,对于离职人员评价公司“管理混乱”的概率其实是非常高的,否则,离职的原因总不能是“自己能力不高吧”?

我们假设在所有能/不能达到你的预期收益的公司中 ,离职人员认为管理好的概率分别为20%/25%。

第二次贝叶斯计算后的结果为53%。

由于管理因素在一年期的投资中区分度不够,概率只是微微下降,仍然在50%以上。

接下来的条件,“动销好”对一年期的投资结果影响的区分度就大多了,在符合/不符合预期的标的中分别为50%和30%。

总结一下上面的方法:

常常有人在后台留言说,刚大,我找到一个堪比苹果之于巴菲特的公司,你看看怎么样?

非常遗憾,苹果的成功不是巴菲特一开始就算出来的,而是一年年符合预期而“剩者为王”的,一个苹果背后就有99家公司不符合巴菲特继续持有的要求,因为新信息出现导致后验概率下降。

从贝叶斯概率的角度看,所谓高手有三种:

最典型的是量化程序,人干不过机器的地方在于:机器用固定的算法每时每刻在全部标的中搜索符合要求的投资机会,而人是凭感觉和经验在有限的几个标的中,思考大致符合要求的投资机会,有时还考虑用什么样的投资方法。

比如巴菲特曾说:“用亏损的概率乘以可能亏损的金额,再用盈利的概率乘以可能盈利的金额,最后用盈利的结果减去亏损的,这就是我们一直试图做的办法。”

通过前面的例子,可以看出,大部分新信息的区分度都很有限,你觉得有用的信息,可能在那些不好的股票上也同样有用,并不足以让最终概率大幅提升。

所以最常见的高手都是在某一个大众缺乏认知的地方,掌握了一些少有人掌握的“条件概率”,比如专注于某一个行业,洞察此行业一些特殊的规律与现象,以此比别人更早发掘胜率高的投资机会。

还有“一招鲜+快速交易+果断止损”的短线高手,并不需要太高的胜率,只需要图形好(先验概率)+择时(稍高的胜率)

更厉害的是观察市场风格变化的高手。同一类信息在不同时期,区分度也是不同的,比如2017-2020年,ROE指标的区分度就非常好,但2021年以后就失效了,而分红率指标,在2021年前没有什么区分度,但21年以后,区分度大大增加。

此类高手,擅长洞察常见的指标在不同时期区分度的变化,以及背后的宏观因素,及时加大最有效的因子,改变自己的选股风格,以适应不同的市场。

大部分人在选股阶段的“先验概率”都差不多,靠的是后续找到有区分度的新信息,而第三类传说中的高手,在选股阶段就有更高的“先验概率”,之后只要用“淘汰指标”筛选掉不符合要求的标的就行了。

最典型的是一些有核心资源圈信息优势的大佬,还有那些有能力主动引导题材与市场情绪的大资金,只需要“先验概率”就能立于不败之地。

这类高手中还有一种天赋异禀、耐心超群的人,有一套极高的“先验概率信号”,但符合要求的情况极少,大部分情况下都在耐心等候,一旦信号出现,立刻加杠杆干。

****

很多人都会告诉你,投资要做大概率正确的事,比如买白马。

但这种古典概率的思想,在投资中的结果往往是“四库全输”,因为人的行为会改变概率,人人都说白马好,白马就会被抬高到毫无赔率的价格,人人避之不及的小概率事件,往往会出现赔率极高的机会。

古典概率所设想的那些先验的、稳定的、可知的大概率事件,注定不会出现,真实投资中的概率因人而异,而且常常因为顿悟而造成概率突变。

然而古典概率是如此的符合人的直觉,投资者总是出现“正在做大概率正确的事”的幻觉。如果大家对贝叶斯概率感兴趣,我会继续这个系列的第二篇。

投资体系系列

2023-4-2 从宏观政策的视角,看人工智能“四两拨千金”的投资机会

2023-2-26 胜负手:投资中如何把握重大机会?

2023-2-5 每一次市场的风格变化,就是一次财富的重新洗牌

2023-1-29 投资高手们都是如何炼成的?

2023-1-8 为什么巴菲特更关注好公司,霍华德•马克思更关注“好价格”?

责任编辑:

标签:

免责声明

头条新闻